
Web Technologies

Unit-IV

1. Explain XML structure with an example.

XML (eXtensible Markup Language) is a markup language designed to store

and transport data. It is both human-readable and machine-readable.

Key Characteristics of XML:

• User-defined tags (unlike HTML which has predefined tags)

• Hierarchical data structure (tree-like)

• Supports nesting and attributes

• Strict syntax rules (well-formed and valid XML)

 XML Structure:

An XML document typically includes:

1. XML Declaration

2. Root Element

3. Child Elements

4. Attributes (optional)

5. Text content or nested elements

 Example XML Document:

<?xml version="1.0" ?>

<library>

 <book id="b001">

 <title>Internet & World Wide Web: How to Program</title>

 <author>H. M. Deitel</author>

 <author>P. J. Deitel</author>

 <edition>Fourth Edition</edition>

 <publisher>Pearson</publisher>

 </book>

 <book id="b002">

 <title>XML for Beginners</title>

 <author>John Smith</author>

 <edition>Second Edition</edition>

 <publisher>ABC Publications</publisher>

 </book>

</library>

XML Part Description

<?xml version="1.0"

encoding="UTF-8"?>

Declaration – Declares version and

encoding of the XML file

<library>
Root element – All other elements are

nested inside

<book>
Parent/Container element – Represents

one book

id="b001"
Attribute – Gives additional information

about the element

<title>...</title>
Child element – Contains the title of the

book

<author>...</author> Multiple authors as child elements

Other elements like <edition>,

<publisher>

Represent additional information about the

book

 Well-Formed Rules:

an XML document must follow these well-formedness rules:

• Must have exactly one root element

• Tags must be properly nested

• Every start tag must have a corresponding end tag

• Attribute values must be quoted

2. Explain XML DTD and XML Schema

Both DTD (Document Type Definition) and XML Schema are used to

define the structure and rules of an XML document. They help in

validating that an XML file follows the expected format. Under XML

Validation, where DTD is introduced first (being older and simpler),

followed by XML Schema (which is more powerful and flexible).

XML DTD (Document Type Definition)

Purpose:

A DTD defines the legal structure of an XML document — what

elements can appear, in what order, and how they are nested.

 Types:

• Internal DTD – Defined within the XML file

• External DTD – Stored in a separate file

Example with Internal DTD:

<?xml version="1.0"?>

<!DOCTYPE library [

 <!ELEMENT library (book+)>

 <!ELEMENT book (title, author+, edition, publisher)>

 <!ATTLIST book id ID #REQUIRED>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT author (#PCDATA)>

 <!ELEMENT edition (#PCDATA)>

 <!ELEMENT publisher (#PCDATA)>

]>

<library>

 <book id="b001">

 <title>Internet & World Wide Web: How to Program</title>

 <author>H. M. Deitel</author>

 <author>P. J. Deitel</author>

 <edition>Fourth Edition</edition>

 <publisher>Pearson</publisher>

 </book>

</library>

• <!ELEMENT library (book+)> – A library must have one or more book

elements.

• <!ATTLIST book id ID #REQUIRED> – Each book must have an id

attribute.

• #PCDATA – Parsed Character Data (text).

XML Schema (XSD – XML Schema Definition)

Purpose:

XML Schema is an XML-based alternative to DTDs. It offers stronger

data typing, namespace support, and is more extensible.

Example Schema (XSD file):

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="library">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="book" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="author" type="xs:string"

maxOccurs="unbounded"/>

 <xs:element name="edition" type="xs:string"/>

 <xs:element name="publisher" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:ID" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML File Referencing the Schema:

<?xml version="1.0"?>

<library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="library.xsd">

 <book id="b001">

 <title>Internet & World Wide Web: How to Program</title>

 <author>H. M. Deitel</author>

 <author>P. J. Deitel</author>

 <edition>Fourth Edition</edition>

 <publisher>Pearson</publisher>

 </book>

</library>

Differences between XML DTC and XML Schema :

Feature DTD XML Schema (XSD)

Syntax Not XML Written in XML

Data Types
Not

supported

Supported (e.g., string,

int)

Namespaces
Not

supported
Supported

Extensibility Limited High

Industry

Adoption
Legacy Widely used today

3. Explain XSL.

XSL is a family of languages used to transform and style XML documents.

It allows XML data to be displayed in a more human-readable form, typically

converting it into HTML or another XML format. XSLT (XSL

Transformations) is the most important component of XSL.

Components of XSL:

1. XSLT (XSL Transformations) – Used to transform XML data into

HTML, text, or another XML format.

2. XPath – Used within XSLT to navigate through elements and attributes

in XML.

3. XSL-FO (Formatting Objects) – Used for formatting XML documents

for output (like PDFs), but less commonly used.

XSLT Example

Let’s say we have an XML file of book data, and we want to display it as an

HTML table using XSLT.

XML File (books.xml):

<?xml version="1.0"?>

<library>

 <book>

 <title>Internet & World Wide Web: How to Program</title>

 <author>H. M. Deitel</author>

 <author>P. J. Deitel</author>

 <edition>Fourth Edition</edition>

 <publisher>Pearson</publisher>

 </book>

</library>

XSLT Stylesheet (books.xsl):

xml

CopyEdit

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <body>

 <h2>Book Library</h2>

 <table border="1">

 <tr>

 <th>Title</th>

 <th>Authors</th>

 <th>Edition</th>

 <th>Publisher</th>

 </tr>

 <xsl:for-each select="library/book">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td>

 <xsl:for-each select="author">

 <xsl:value-of select="."/>

 <xsl:if test="position() != last()">, </xsl:if>

 </xsl:for-each>

 </td>

 <td><xsl:value-of select="edition"/></td>

 <td><xsl:value-of select="publisher"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Linking XML to XSLT:

In your XML file, include the reference to the stylesheet:

<?xml-stylesheet type="text/xsl" href="books.xsl"?>

Important Concepts:

Concept Explanation

<xsl:template

match="/">

Root template – the starting point for

transformation

<xsl:for-each> Loops through XML elements (like each <book>)

<xsl:value-of> Extracts and displays data

<xsl:if>
Used for conditional logic (e.g., adding commas

between authors)

Output HTML table representation of XML content

Why Use XSLT?

• Allows separation of content (XML) from presentation (XSL)

• Helps in dynamically generating HTML views from XML data

• Supports reusability and modular web design

4. Explain Document Object Model(DOM)?

The XML DOM provides a standard way to access and manipulate

XML documents. It models the entire document as a tree of objects

(nodes) that can be dynamically modified using programming languages

like JavaScript or Java.

Key Points:

1. Tree Structure Representation

o XML documents are represented as a hierarchical tree of nodes.

o Each node corresponds to an element, attribute, text, or the

document itself.

2. Node Types

o Common node types include:

▪ Document Node: Represents the entire document.

▪ Element Node: Represents each XML tag.

▪ Attribute Node: Represents attributes within elements.

▪ Text Node: Represents the actual content between tags.

3. Root Node

o Every XML DOM tree starts with a single root element.

o From this node, the entire document structure can be accessed or

manipulated.

4. Navigation Methods

o You can traverse the XML DOM using methods like:

▪ getElementById()

▪ getElementsByTagName()

▪ childNodes, parentNode, nextSibling, etc.

5. Live Representation

o The DOM is a live object model, meaning changes to the DOM

are reflected immediately in the document view or structure.

6. Programming Interfaces

o DOM APIs can be used with:

▪ JavaScript (in web browsers)

▪ Java (via JAXP or DOM parsers)

▪ Other languages like Python, PHP, etc.

Simple Example:

XML File:

<library>

 <book id="b001">

 <title>Internet & World Wide Web</title>

 <author>H. M. Deitel</author>

 </book>

</library>

JavaScript Using DOM:

let xmlDoc = parser.parseFromString(xmlString, "text/xml");

let titles = xmlDoc.getElementsByTagName("title");

alert(titles[0].childNodes[0].nodeValue); // Outputs: Internet & World

Wide Web

5. Explain the key differences between traditional Web Application and

Ajax-based Web Application

Traditional Web Application:

Step 1: Form Submission: The user begins by filling out a form, such as

a registration form, entering details like name, email, and password. Once

completed, the user submits the form, typically by clicking a "Submit"

button. At this point, the browser prepares to send the form data to the

server.

Step 2: Sending the Request : After submission, the browser sends an

HTTP request—usually a POST request—to the web server. This request

contains all the user-entered data. During this process, the request is

synchronous, meaning the browser pauses interaction and waits for the

server’s response.

Step 3: Server Processing : The server receives the request and begins

processing it. This includes validating the submitted data, checking

business rules (e.g., if the email is already registered), and interacting with

a database if needed. After processing, the server generates a new HTML

page to return to the client.

Step 4: Loading the Response: The browser receives the full HTML

response and replaces the current page with the new one. This causes the

browser to go blank temporarily while loading the new content, which can

feel slow and unresponsive, especially on slower connections.

Step 5-8: During this synchronous cycle, the user cannot interact with the

web page while the request is being processed. This waiting time, often due

to network latency or server delays, led users to refer to the web

humorously as the “World Wide Wait.” If another form is submitted, the

same steps repeat.

Ajax Web Application:

Step 1: Creating the XMLHttpRequest Object: AJAX (Asynchronous

JavaScript and XML) introduces a new layer between the client and server

to enhance user experience. When a user interacts with an AJAX-enabled

web page—for example, by entering data or clicking a button—the

browser does not immediately reload the page. Instead, the client creates

an XMLHttpRequest object. This object is responsible for managing the

communication between the client and the server.

Step 2: Sending the Request Asynchronously: The XMLHttpRequest

object sends the request to the server without interrupting the user’s

interaction with the web page. Unlike traditional synchronous requests,

AJAX requests are asynchronous, meaning they do not block the user

interface. This allows the user to continue interacting with the web page

while the server processes the request in the background.

Steps 3 & 4: Handling Additional Requests : As the server processes the

initial request, the user may continue interacting with the application.

These additional interactions can result in more AJAX requests being sent

to the server. This means multiple asynchronous requests can be handled

concurrently—without reloading or disturbing the current state of the page.

Step 5: Server Responds and Client Callback Executes:Once the server

responds to a request, the XMLHttpRequest object triggers a callback

function—a JavaScript function defined by the developer to handle the

server’s response. This function processes the returned data, which could

be in XML, JSON, or plain text format.

Step 6: Partial Page Update: The callback function updates a specific part

of the web page—often a div or a form field—based on the server's

response. This is known as a partial page update, and it enables dynamic,

real-time changes without refreshing the entire page. For example, a user

might see search results appear below a search bar instantly, or a

notification might appear without reloading.

Step 7: Concurrent Processing and Multiple Updates: While the client

is updating one part of the page with a server response, the server may

simultaneously be responding to a second request. At the same time, the

client may also initiate another request. This parallelism allows AJAX

applications to be highly interactive and feel more like desktop

applications in terms of responsiveness.

Advantage of AJAX

The key advantage of AJAX is that it avoids full-page reloads. Instead,

only small parts of the page are updated in response to user actions. This

leads to a smoother, faster, and more responsive user experience, allowing

modern web applications to behave much like native desktop software.

6. Explain Rich Internet Applications(RIAs) with AJAX.

In a traditional web application, when a user fills out a form—such as a

registration form containing fields like first name, last name, email address,

and telephone number—they typically click a Register or Submit button to

send the entire form to the server. At this point, the browser submits all data

to the server for validation. During this synchronous process, the user cannot

interact with the page while the server processes the form data. If the server

detects any errors (e.g., an invalid email or phone number), it generates a new

page showing those errors and sends it back to the client. The browser then

reloads the page and displays the error messages. The user must correct the

issues and resubmit the form. This cycle repeats until all the data is valid and

successfully stored on the server. Unfortunately, this process can be slow and

frustrating because the entire page reloads every time invalid data is

submitted.

In contrast, AJAX-enabled forms offer a much more interactive and

responsive experience. Instead of sending the entire form for validation after

submission, each input field can be validated dynamically and

asynchronously—as the user is typing or moving from one field to another.

For example, if a form requires a unique email address, an AJAX request can

be triggered automatically as soon as the user enters the email and moves to

the next field. This request checks the email's availability on the server in the

background, without interrupting the user. If the email is already in use, the

server responds with an error message that is immediately displayed next to

the email field, allowing the user to correct the issue instantly.

This kind of field-level validation eliminates the need for multiple full-form

submissions and reloads, making the form completion process much faster and

less frustrating. Moreover, AJAX can also enhance the form’s intelligence—

for example, by using the entered ZIP code to automatically retrieve and fill

in related fields like city and state, based on server data. This not only speeds

up the form completion process but also reduces the chances of user error.

In summary, AJAX transforms static, reload-heavy forms into dynamic, user-

friendly interfaces by providing real-time validation and partial updates,

significantly improving usability and reducing wait times.

7. Explain XMLHttpRequest with AJAX example.

The XMLHttpRequest object (which resides on the client) is the layer between

the client and the server that manages asynchronous requests in Ajax

applications. This objec is supported on most browsers, though they may

implement it differently—a common issue in JavaScript programming. To

initiate an asynchronous request, you create an instance of the

XMLHttpRequest object, then use its open method to set u the request and its

send method to initiate the request.

an Ajax application in which the user interacts with the page b moving the

mouse over book-cover images. We use the onmouseove and onmouseout

events to trigger events when the user moves the mouse over and out of an

image, respectively. The onmouseove event calls function getConten with the

URLofthedocument containing the book’s description. The function makes

this request asynchronously using an XMLHttpRequest object. When the

XMLHttpRequest objec receives the response, the book description is

displayed below the book images. When the user moves the mouse out of the

image, the onmouseout event calls function clearCon ten toclear the display

box. These tasks are accomplished without reloading the page on the client.

// Create a new XMLHttpRequest object

var xhr = new XMLHttpRequest();

// Configure it: GET-request for the URL /ajax_example.txt

xhr.open('GET', 'ajax_example.txt', true);

// Set up a function that will be called when the request completes

xhr.onreadystatechange = function () {

 // Check if the request is complete (readyState 4)

 if (xhr.readyState == 4) {

 // Check if the request was successful (status 200)

 if (xhr.status == 200) {

 // Output the response text to the console

 console.log(xhr.responseText);

 } else {

 // Handle error, if any

 console.error("Request failed with status: " + xhr.status);

 }

 }

};

// Send the request to the server

xhr.send();

8. Explain the process of creating a Full scale AJAX enabled application.

Creating a full-scale AJAX-enabled application involves a few steps where

you use JavaScript, XMLHttpRequest (or Fetch API), HTML, and a server-

side language to build dynamic web applications that can fetch and send

data asynchronously.

Here's a high-level breakdown of the steps to create an AJAX-enabled

application:

Step-by-Step Process for Creating an AJAX Application:

1. Define the Requirements of the Application

First, outline the functionality of your application. An AJAX-enabled web

application allows portions of the page to update dynamically without

needing to reload the entire page. For example, an online chat system,

dynamic form validation, or live search functionality could be built using

AJAX. Define the server-side functionality that your application will

require (e.g., fetching data from a database, submitting forms, etc.).

2. Create the Basic HTML Structure

This includes the basic layout of your web page and the user interface (UI).

For example, you may have a text box, a submit button, and a display area

for showing results.

HTML file

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>AJAX Example</title>

 <script src="ajax.js"></script> <!-- Link to the external JS file for AJAX

-->

</head>

<body>

 <h2>AJAX Example</h2>

 <input type="text" id="query" placeholder="Enter a search term">

 <button onclick="sendRequest()">Search</button>

 <div id="result"></div>

</body>

</html>

3. Create JavaScript for Making AJAX Requests

Use JavaScript to create the XMLHttpRequest object or the newer Fetch

API to make asynchronous HTTP requests to the server. Here's an example

of how to use XMLHttpRequest:

javascript

// File: ajax.js

function sendRequest() {

 var query = document.getElementById('query').value; // Get the user

input

 var xhr = new XMLHttpRequest(); // Create a new XMLHttpRequest

object

 // Setup the GET request (using query parameter)

 xhr.open('GET', 'search.php?query=' + query, true);

 // Define a function to handle the response

 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4 && xhr.status == 200) {

 document.getElementById('result').innerHTML =

xhr.responseText;

 }

 };

 // Send the request to the server

 xhr.send();

}

4. Write Server-Side Code

On the server, you need to handle the request made by the client and send

the appropriate response back. You can use any server-side language such

as PHP, Node.js, Python, etc.

5. Testing the Application

Once the client-side (HTML, JavaScript) and server-side (e.g., PHP) code

is ready, test the application.

Enter a search term in the input box, click the "Search" button, and check

if the result is displayed dynamically below the input box without a full

page reload.

6. Enhance the Application

As the application grows, you may want to add more features like form

validation, real-time updates, etc.

You might use advanced JavaScript techniques like handling different

types of HTTP requests (GET, POST), managing errors, and optimizing for

performance.

7. Debugging and Optimizing the Application

During the development of an AJAX application, you need to debug the

client-side JavaScript and the server-side code.

Utilize browser developer tools to inspect network requests, track down

errors, and analyze the flow of data between the client and the server.

8. Final Testing and Deployment

After all functionality is in place, perform final testing to ensure everything

works smoothly across different browsers and devices.

Deploy your application on a web server for public access.

